RedCap: residual encoder-decoder capsule network for holographic image reconstruction
نویسندگان
چکیده
منابع مشابه
Single Image Reflection Removal Using Deep Encoder-Decoder Network
Image of a scene captured through a piece of transparent and reflective material, such as glass, is often spoiled by a superimposed layer of reflection image. While separating the reflection from a familiar object in an image is mentally not difficult for humans, it is a challenging, ill-posed problem in computer vision. In this paper, we propose a novel deep convolutional encoder-decoder metho...
متن کاملEncoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
Spatial pyramid pooling module or encode-decoder structure are used in deep neural networks for semantic segmentation task. The former networks are able to encode multi-scale contextual information by probing the incoming features with filters or pooling operations at multiple rates and multiple effective fields-of-view, while the latter networks can capture sharper object boundaries by gradual...
متن کاملA Recurrent Encoder-Decoder Network for Sequential Face Alignment
We propose a novel recurrent encoder-decoder network model for real-time video-based face alignment. Our proposed model predicts 2D facial point maps regularized by a regression loss, while uniquely exploiting recurrent learning at both spatial and temporal dimensions. At the spatial level, we add a feedback loop connection between the combined output response map and the input, in order to ena...
متن کاملDR2-Net: Deep Residual Reconstruction Network for Image Compressive Sensing
Most traditional algorithms for compressive sensing image reconstruction suffer from the intensive computation. Recently, deep learning-based reconstruction algorithms have been reported, which dramatically reduce the time complexity than iterative reconstruction algorithms. In this paper, we propose a novel Deep Residual Reconstruction Network (DRNet) to reconstruct the image from its Compress...
متن کاملPropagation phasor approach for holographic image reconstruction
To achieve high-resolution and wide field-of-view, digital holographic imaging techniques need to tackle two major challenges: phase recovery and spatial undersampling. Previously, these challenges were separately addressed using phase retrieval and pixel super-resolution algorithms, which utilize the diversity of different imaging parameters. Although existing holographic imaging methods can a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2020
ISSN: 1094-4087
DOI: 10.1364/oe.383350